Đường tròn của Apollonius Đường_tròn

Bài chi tiết: Circles of Apollonius
Định nghĩa đường tròn của Apollonius: d1/d2 constant

Apollonius của Pergaeus chỉ ra rằng đường tròn còn có thể định nghĩa là tập hợp các điểm trên mặt phẳngtỉ số không đổi (khác 1) của khoảng cách tới hai tiêu điểm, A và B.[7][8] (Nếu tỉ số là 1 thì tập hợp ấy là đường trung trực của đoạn thẳng AB.)

Chứng minh gồm hai phần. Đầu tiên ta cần chứng minh, cho hai tiêu điểm A và B một tỉ số, bất kì điểm P thỏa mãn tỉ số phải nằm trên một đường tròn nhất định. Gọi C là một điểm thỏa mãn tỉ số và nằm trên đoạn thẳng AB. Từ định lý đường phân giác suy ra PC sẽ chia đôi góc trong APB:

A P B P = A C B C . {\displaystyle {\frac {AP}{BP}}={\frac {AC}{BC}}.}

Tương tự, đoạn thẳng PD qua điểm D trên đường thẳng AB chia đôi góc ngoài BPQ với Q nằm trên tia AP kéo dài. Do góc ngoài và góc trong bù nhau, góc CPD phải bằng 90 độ. Tập hợp các điểm P sao cho góc CPD là góc vuông tạo thành một đường tròn với CD là đường kính.

Thứ hai, xem [9]:tr.15 để chứng minh rằng các điểm trên đường tròn vừa tạo thỏa mãn tỉ số.

Tỉ số kép

Một tính chất của đường tròn liên quan đến hình học của tỉ số kép của các điểm trên mặt phẳng phức. Nếu A, B, và C cho như trên thì đường tròn của Apollonius của ba điểm là tập hợp các điểm P sao cho giá trị tuyệt đối của tỉ số kép bằng 1:

| ( A , B ; C , P ) | = 1.   {\displaystyle |(A,B;C,P)|=1.\ }

Nói cách khác, P là điểm trên đường tròn của Apollonius khi và chỉ khi tỉ số kép (A,B;C,P) nằm trên đường tròn đơn vị trên mặt phẳng phức.

Đường tròn tổng quát

Nếu C là trung điểm của đoạn AB thì tập hợp các điểm P thỏa mãn điều kiện Apollonius

| A P | | B P | = | A C | | B C | {\displaystyle {\frac {|AP|}{|BP|}}={\frac {|AC|}{|BC|}}}  

không tạo thành một đường tròn mà thành một đường thẳng.

Vậy nên nếu A, B, C là các điểm phân biệt trên mặt phẳng thì quỹ tích điểm P thỏa mãn phương trình trên gọi là "đường tròn tổng quát". Nó có thể là một đường tròn hoặc một đường thẳng. Trong trường hợp này, một đường thẳng là một đường tròn tổng quát có bán kính vô hạn.

Tài liệu tham khảo

WikiPedia: Đường_tròn http://mathworld.wolfram.com/Circumcircle.html http://mathworld.wolfram.com/Incircle.html http://mathworld.wolfram.com/TangentialPolygon.htm... http://dlxs2.library.cornell.edu/cgi/t/text/text-i... http://www.perseus.tufts.edu/hopper/text?doc=Perse... http://www-history.mcs.st-andrews.ac.uk/history/Ch... http://www-history.mcs.st-andrews.ac.uk/history/Hi... https://books.google.com/books?id=E1HYAAAAMAAJ https://web.archive.org/web/20120120120814/http://... https://web.archive.org/web/20120121111333/http://...